If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2-19w-15=-4w^2
We move all terms to the left:
6w^2-19w-15-(-4w^2)=0
We get rid of parentheses
6w^2+4w^2-19w-15=0
We add all the numbers together, and all the variables
10w^2-19w-15=0
a = 10; b = -19; c = -15;
Δ = b2-4ac
Δ = -192-4·10·(-15)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-31}{2*10}=\frac{-12}{20} =-3/5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+31}{2*10}=\frac{50}{20} =2+1/2 $
| 0.5f=79 | | q+293=998 | | a-88=26 | | 3(p+-2)=18 | | 3=k−19 | | 0.38(x+5)=28 | | 14+m=25 | | 0.06y=24 | | 8=k/2+4 | | 58+n=90 | | 2(x+2)+2(3x-1)=52 | | n+245=1,250 | | 90=n+58 | | u+68=85 | | 3n=-19 | | 5n-11=36 | | q−14=4 | | .75(2x-8)-(2x+5)=11 | | 34=t=18 | | 7+7j=6j−2 | | 5c-1=11 | | t+1=10+2t | | ⅔(9x-6)=20 | | -y=-91 | | s−3=5 | | 2x+6+3x=2x+15 | | N-274=605-(4x28) | | 5=s−3 | | 131x–40=7 | | 10x2=72 | | (104-2x)+(5x-8)+3x=180 | | .5(4x-8)=5x-5 |